Optimum Reject Options for Prototype-based Classification
نویسندگان
چکیده
We analyse optimum reject strategies for prototype-based classifiers and real-valued rejection measures, using the distance of a data point to the closest prototype or probabilistic counterparts. We compare reject schemes with global thresholds, and local thresholds for the Voronoi cells of the classifier. For the latter, we develop a polynomial-time algorithm to compute optimum thresholds based on a dynamic programming scheme, and we propose an intuitive linear time, memory efficient approximation thereof with competitive accuracy. Evaluating the performance in various benchmarks, we conclude that local reject options are beneficial in particular for simple prototype-based classifiers, while the improvement is less pronounced for advanced models. For the latter, an accuracy-reject curve which is comparable to support vector machine classifiers with state of the art reject options can be reached.
منابع مشابه
Efficient rejection strategies for prototype-based classification
Due to intuitive training algorithms and model representation, prototypebased models are popular in settings where on-line learning and model interpretability play a major role. In such cases, a crucial property of a classifier is not only which class to predict, but also if a reliable decision is possible in the first place, or whether it is better to reject a decision. While strong theoretica...
متن کاملRejection strategies for learning vector quantization
We present prototype-based classification schemes, e. g. learning vector quantization, with cost-function-based and geometrically motivated reject options. We evaluate the reject schemes in experiments on artificial and benchmark data sets. We demonstrate that reject options improve the accuracy of the models in most cases, and that the performance of the proposed schemes is comparable to the o...
متن کاملRejection Strategies for Learning Vector Quantization - A Comparison of Probabilistic and Deterministic Approaches
In this contribution, we focus on reject options for prototypebased classifiers, and we present a comparison of reject options based on statistical models for prototype-based classification as compared to alternatives which are motivated by simple geometric principles. We compare the behavior of generative models such as Gaussian mixture models and discriminative ones to results from robust sof...
متن کاملLocal Rejection Strategies for Learning Vector Quantization
Classification with rejection is well understood for classifiers which provide explicit class probabilities. The situation is more complicated for popular deterministic classifiers such as learning vector quantisation schemes: albeit reject options using simple distance-based geometric measures were proposed [4], their local scaling behaviour is unclear for complex problems. Here, we propose a ...
متن کاملClassification with Reject Options in a Logical Framework: a fuzzy residual implication approach
In many classification problems, overlapping classes and outliers can significantly decrease a classifier performance. In this paper, we introduce the possibility of a given classifier to reject patterns either for ambiguity or for distance. From a set of typicality degrees for a pattern to be classified, we propose to use fuzzy implications to quantify the similarity of the degrees. A class-se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1503.06549 شماره
صفحات -
تاریخ انتشار 2015